
Software Testing

Team 7: Bermuda Digital Entertainment

Prajwal Binnamangala
Joseph Sisson

Sebastian Sobczyk
Aymeric Goransson

David Ademola
CJ Donoghue



Introduction
The purpose of this section is to explain the way in which testing has been implemented,
organised and designed such that it maximises the amount of code that can be automatically
tested.

White/Open box testing

In order to test the various pieces of code, we are using the JUnit library and libGDX’s
Headless frontend. This should allow us to test any of the game code that does not require
rendering. The JUnit test results are output to a html file and, by default, run with every build.

The automatic software tests are separated into the classes they are primarily designed to
test. There is also a separate class for checking assets. This leads to the tests being split
into the following classes:

● AssetTests - For checking that all assets required by the game are present
● GameObjectTests - For testing the base GameObject Class
● CollegeTests - For testing the College Class (which inherits GameObject)
● PlayerTests - For testing the Player Class (which inherits GameObject)
● SaveTests - For testing the SaveLoad Class
● BoatTests - For testing the Boat Class
● ScreenTests - For testing the GameScreen class.

Within these testing classes, there are both unit and integration tests. The unit tests only
check individual sections of code, such as the initialisation of a class, the running of a single
method, or the existence of a particular asset.
There are also integration tests that test several methods, sometimes from different classes,
in sequence to ensure that the actual communication between them is correct.
None of these test classes are capable of testing every element of the game, given that the
render and draw methods, for example, cannot be checked properly by the game running in
a headless configuration. Instead, all of the easily testable methods are tested, and anything
else will be checked manually via Black box testing.
If a method is inherited by another class (like updateHitBox() from GameObject to Player), it
is not tested again, unless it is overridden, or anything related to it’s function (like hitBox) has
been altered by the subclass.

Black box/ System testing

We are using black box testing to find the gaps in the functionality of the software. It helps in
giving an overview of how the software is performing. Using this form of testing helps us to
gain the knowledge of the software issues at the users end. We carried out Black box testing
after the development of the software to ensure that it will cover all of the requirements and
to ensure that the entire game integrates correctly.
Black Box testing also helps to check the sections of code that cannot be properly unit tested
in a headless program, such as render and draw methods. This makes black box testing
particularly helpful in this project given that it is a game in which many of it’s features are
dependent on having a GUI and a person looking at it.



White Box Testing

In total 57 tests were run by JUnit, of which 56 passed.

The largest problem in implementing the test framework was that so many parts of the game
had the GameScreen class passed to it. In some cases, it was possible to take the required
data from the GameScreen individually, and pass it to the methods of other classes without
having to pass the entire screen to it (and these sections could be tested).
In other cases, it would have required passing tens of variables to the method individually,
which would have most likely resulted in having to rewrite a large amount of the code, for the
sole purpose of making unit testing work correctly.

The one test that did fail was testScreenInit. This was a test that instantiated the
GameScreen. The reason for it’s failure was not because GameScreen (and YorkPirates
which was passed to it as a parameter) did not work, but because within the headless testing
setup, there is not enough support for the rendering methods.
We attempted to create a ‘fake’ GameScreen for testing purposes, but many of the methods
requiring the GameScreen were heavily dependent on methods of the screen, not just the
properties and may not have given a true representation of if the game actually worked in
practice.

Test Results can be found at https://bermuda-digital-entertainment.github.io/test/

https://bermuda-digital-entertainment.github.io/test/


Black box testing

Below there is a traceability matrix that has 4 columns. The requirements given by the user
and software project brief are divided into blocks. Each block has requirements that are
associated with each other. Therefore, this represents boundary testing.
The first column represents the test ID. Every test block has a unique test case ID for its
identification.
The second column is the software requirement ID. Every block in this column contains the
ID’s of all related software requirements. These requirement ID’s are extracted from the
Requirements documentation. All the software and user requirements that can be uniquely
identified by the same test case ID are related as well.
The third column is of User requirements ID in which every block has the ID’s of all related
user requirements.
The last column indicates “Yes” if the tests on each block were successful and “No” if not.

Test
case
ID

Description Software requirement
ID

User requirement
ID

Test
success
ful

1 Software must lod
within 30 secs and
check if starting
screen has a name
input field and a start
button

FR.START.SCRN
FR.START.START
FR.START.NAME
NFR.LOAD_TIME

UR.START_SCRN
UR.SCRN_NAME

Yes

2 Be able to see
player ship all the
time and move it
within the boundary

FR.DISPLAY.SHIP
FR.DISPLAY.CAM
FR.FREEMOVE
FR.DISPLAY.EDGE
FR.BOUNDARY

UR.SEE_POS
UR.UPDATE_POS

Yes

3 Simple game tutorial
for new players

NFR.SIMPLICITY
FR.TUTORIAL

UR.TUTORIAL Yes

4 Player must be able
to view other
colleges, college info
and their ships

FR.DISPLAY.CLG
FR.CLG_INFO
FR.DISPLAY.DOCK

UR.CLG_POS Yes

5 Award points and
gold after tasks

FR.AWRD.POINTS
FR.AWRD.GOLD

UR.COLLECT_PNTS
UR.COLLECT_LOOT

Yes

6 Check college health
decrementing while
being attacked by
user

FR.ATTACKCURSOR
FR.CLG_HEALTH

UR.ATK_CLG Yes

7 Check for loot,
points and mini map
display

FR.DISPLAY.HUD UR.VIEW_PNTS
UR.VIEW_LOOT

Partially
(No Mini
Map)



8 Check if college is
captured when its
health is zero

FR.CLG_HEALTH
FR.CLG_CONVERT

UR.CPTR_CLG Yes

9 Check if the tasks
are being displayed
with increase in
difficulty level

FR.OPTNL_TASKS
FR.DIFFICULTY_LVL

UR.SEE_TASKS Yes

10 Check if the user is
able to collide and
attack enemy
colleges, ships and
obstacles

FR.CLG_ATTACK
FR.COLLISION

UR.ENEMY_SHIP
UR.OBSTACLES

Yes

11 Check if the kill
screen appears
when 1) won, 2) lost,
3) restart or 4) finish
the game before
returning home. Be
able to pause and
save.

FR.KILL_SCRN UR.RESTART_GAME
UR.FINISH_GAME
UR.SAVE_GAME
UR.LOSE_GAME

Yes

12 Check if the shop
works fine along with
GUI.

FR.DISPLAY.GUI UR.SHOP Yes

13 Check if power ups
do their job.

UR.POWER_UP Yes

14 Test the game on
13” and 47” display

CR.RESOLUTION Partial
(Tested
on 15”
display)

15 Game must be
playable using UK
standard mouse and
keyboard and on a
machine with 4GB
and higher specs

CR.LOW_SPEC Yes

16 Gameplay max 10
min and stable
throughout

NFR.GAME_TIME
NFR.STABLE

Yes


