Implementation

Jeam 7:
Bermuda Digital Entertainment

Prajwal Binnamangala
Joseph Sisson
Sebastian Sobczyk
Aymeric Goransson
David Ademola
CJ Donoghue

3a) Code Repository:

https://qgithub.com/Bermuda-Digital-Entertainment/York-Pirates-2

3b)

As can be seen from our Architecture document, the game had a solid foundation to build on
with the class GameObject as the building block of all objects in the game. We did not
change the class itself significantly, however it has provided us with great tools to expand the
game further. The draw() function is a perfect example of this, as it supplies a lot of
functionality that can be cherry-picked for different purposes.

An example of this is the difference between the unchanged draw function in the Player
class and the draw functions of the Obstacle, PowerUp and Boat classes. These were
created to satisfy the requirements UR.OBSTACLES, UR.POWER_UP and
UR.ENEMY_SHIP respectively. Since these objects are simpler than the Player object, their
drawing functions can be stripped of excess detail.

We found this starting Architecture very clean, intuitive, and practical so we decided to build
the software using this approach. As can be seen from the Architecture diagram, a total of 8
classes extend the GameObject class (Boat, College, HealthBar, Indicator, Obstacle,
Player, PowerUp and Projectile).

We decided to do this kind of approach for all the different screens that are part of the
software. This has helped us to keep the code modular in line with our requirement
NFR.MODULARISE. As further seen from our Abstract and Concrete architecture diagrams,
all 8 screen classes (DifficultyScreen, EndScreen, GameScreen, PauseScreen,
SaveScreen, ShopScreen, TipsScreen and TitleScreen) extend the libGdx’s
ScreenAdapter class. Almost all also use Stage object class as their main building block
apart from GameScreen which heavily relies on the SpriteBatch class to display all the
gameplay graphics.

We took care not to include any function definitions within the screen building section of the
classes and keep them all separate at the bottom of the class file. An example of this can be
the DifficultyScreen class that deals with changing various variables depending on the
chosen difficulty. The functionality of the code is kept separate from the building of the stage
and the screen and the buttons are used to call on those separate functions. This keeps the
code modular and makes it possible to test the functions.

We decided to leave the HUD and YorkPirates classes almost untouched as we felt their
functionality was brilliant and didn’t need changing aside from adding the shop menu HUD
and changing minor camera settings in the YorkPirates.

Undoubtedly though, the prime example of our modular coding approach is the
GameScreen class. We chose to initialise almost all game graphics in the initialisation
function of this class as this is a watertight approach to minimise the risk of any memory
leaks occurring during the rendering of the game’s frames.

https://github.com/Bermuda-Digital-Entertainment/York-Pirates-2

The only part of the code that does not conform to the structural template we have decided
on is the code designed to satisfy the requirement UR.BAD_WEATHER and rendering of the
fog graphic. Since the fog is a dynamic event within the game with a unique effect and
functionality, we decided on a dynamic implementation in the code itself. Similarly to other
assets, the Sprite for the fog is initialised in the GameScreen class, however the fog itself
does not belong to a specific class of the YorkPirates package. Instead, the fog's dynamic
functionality is entirely enclosed within the render() method of the GameScreen (figure 1).
The code snippet works with a set of conditions that change during gameplay to spawn the
fog effect at pseudo-random intervals for a pseudo-random amount of time (random within
limits)

fog.setX(player.x-(fog.getWidth()/2));
g

og.setY({player.y-(fog.getHeight()/2));
(foghDecider 0){
foghDecider = MathUtils.random(start: 30, end: 68);
£ -1
L 1€3 3
(Instant.now().getEpochSecond() startTimeStamp > fogDecider){
fog.draw(game.batch, alphaModulation: 8.3f);
(counterStarted== H
fogCounter Instant.now() .getEpochSecond();
counterStarted ;
foglLengthDecider = MathUtils.random{ start: 15, end: 38);

{
- fogCounter > foglengthDecider){
startTimeStamp = Instant.now().getEpochSecond();
fog.setFlip(x: s ¥):
counterstarted -
fogDecider = 8;
foglLengthDecider = @

Figure 1

The non-trivial new features that we have added to the software are:

- Boatclass. Entirely new class that extends the GameObject class that is responsible
for creating enemy ships and controlling their behaviour (movement, projectiles,
collisions etc.) (Requirement: UR.ENEMY_SHIP)

- DifficultyScreen class. Deals with creating the screen for choosing the difficulty for the
playthrough. Holds functions that change variables used for game mechanics according
to chosen difficulty. (Requirement: FR.DIFFICULTY_LV)

Obstacle class. A simple extension of GameObject that creates obstacle objects and
holds information regarding their effect on the player. (Requirement: UR.OBSTACLES)

- PowerUp class. A very similar class to Obstacle responsible for the functionality of
power ups that have been added to the game. (Requirement: UR.POWER_UP)

- Saveload class. Holds the code responsible for creating the save file JSON and
functions that allow saving GameObject variables etc. (Requirement: UR.SAVE_GAME)

- SaveScreem class. Provides the GUI for the game saving and loading functionality.
(Requirement: UR.SAVE_GAME

- ShopScreen class. Builds the GUI for the game’s shop and adds the shop’s back-end
functionality that builds on functions from other classes, i.e. boosting player’s health with
its own function that calls a function from the Player class.(Requirement: UR.SHOP)

- TipsScreen class. A very simple screen class that displays necessary information for
the player about the game’s environment.(Requirement: UR.HELP)

Where any graphical assets were involved and/or created, we have kept true to the initial
look and feel of the game as we deemed it to be very clear and satisfying for the user. The
screens were made mostly using existing skin and sprites so that they do not feel out of
place when transitioning between one screen and another.

The functionality of PowerUp and Obstacle objects has been designed similarly to that of
the fog graphic in terms of the effects they have on the player. All necessary information is
held within the object itself for the purpose of the game save, however the effect on the
player is decided at the time of impact in-game through the render method and the
entity.power variable.

We have also added some new functionalities to previously existing classes, such as setting
the health of the player, healing the player, altering the player’s speed etc. all done through
the Player class.

To meet the UR.ENEMY_SHIP requirement, we have changed the functionality of the
College class as previously the class spawned idle ships that did not interact with the player
or player’s projectiles. Any code related to spawning idle ships has been removed from the
College class and the new class Boat was added instead. The constructor of the class is
very similar to the College class but takes a different approach for health tracking and health
bar drawing as well as calculates collisions differently. The enemy ships are designed to
follow the player once in range and act as additional obstacles even when destroyed.

Another systemic change that we decided on was changing the zoom of the main game
camera to give the player a wider field of view. This was also done for the broader aim of
unlocking the game screen size and being able to work with the resizing of the window. The
project we took over did not have any provisions for keeping the game functional when the
game window was resized. This resulted in graphics stretching, on-screen buttons not
working and the camera de-syncing every time the window was resized. We have tackled

this issue by changing the Viewport of the HUD class to a FitViewport and adding overriden
resize() functions that update the camera and the HUD Viewport.

We have also removed all code associated with playing music in the game as we have been
instructed by the customer that the game should have no music due to the nature of the
setting it will be showcased in.

Another feature that has been removed were the shaders responsible for hit animations on
colleges. While we understand that this may be considered to have hindered the overall
quality of the game, this change was necessary as it interfered with the implementation of
the unit tests and meeting the NFR.UNITTEST requirement. This is further justified by the
fact that hit registering on the player, colleges and enemy ships is made obvious to the user
by visual representation of taking damage (decreasing health bars on all entities) and the
projectiles disappearing upon impact. We also felt that the shaders and flickering did not go
in line with the simple visuals of the game.

All the features required for the purpose of the Assessment 2 have been added in our
implementation. To summarise:

- Ways to spend plunder (UR.SHOP — (mainly) ShopScreen class)
- Combat with enemy ships (UR.ENEMY_SHIP — (mainly) Boat class)
- Addition of bad weather (UR.BAD_WEATHER - code in Figure 1 of this document)

- Addition of obstacles (UR.OBSTACLES — Obstacle and code in GameScreen
render())

- Five special power ups (UR.POWER_UP — PowerUp and code in GameScreen
render())

- Support for different levels of difficulty (UR.DIFFICULTY_LV — DifficultyScreen)

- Save and Load facilities (UR.SAVE_GAME — SavelLoad and SaveScreen)

