Architecture

Team 7: Bermuda Digital Entertainment

Prajwal Binnamangala
Joseph Sisson
Sebastian Sobczyk
Aymeric Goransson
David Ademola
CJ Donoghue

Obstacle

+ collision: boolean

+ colides(batch: SpritaBatch,
player: Player): Boolean

Abstract Architecture S
rates - gameCentinue()
| SCREEN TO PIXEL RATIO: int +upgrace()
+ Create()
- + dispesal)
UMLClass Diagram [
GameScreen
'+ playerToam: Srng
'+ enemyTeam: String
- elapsedTime: fioat
e Bl ScoreManager HUD ‘GameObject
-followPlayer: boclean - score: int - WtorialComplets: boolean +x:float
TitleScreen - canEndCGame: boolean +y: float
+g () + Add(amount: int) - DISTANGE_GOAL: int + width: float
+ gameEndjboolean) : - POINT_GOAL: Int + height: float
+ gamesian() =" | +gameReser o g - DISTANCE_REWARD: int ke o
- POINT_REWARD: Int + CUMrentHean: float
* team: Sting
- + tenderStage(screen; GameScreen) +takeDamage(screen: G reen,
a e Iag ral I I . darmage: eal, projectiieTeam: Siring)
+move(x: Roat, y: fioat)
User runs the game i slapsedTimefoal)
User presses Quit Button [TitleScreen \ PausaScreen
i EncBoreen - gameGontnue() Frojectlle HealthBar Indlestor
The user can input an in-game name. | - maxDistance: float - startWidth: float - wisible: boolean
AN S - projectieSpoed: fioat
- projectiellamage: float + resizelcurrentvalue: oal)
User presses Start button SaveScresn
|, + update(screan: GameScreen)
//———\\ - gameGantinua()
DificullyScrssa InstructionScreen
Screen allows the user 1o choose
\\ the difficulty of the game. ,/ - gameContinue() Player College
B - - HEALTH: int '+ capturedCount: int
User picks difficu - POINT_FREQUENCY: int
. 1y - SPEED: fat - splashifime: flosl Baat
- SavedGame - CAMERA_SLACK: fioat ~toBinodSplash: + speed: it
I’/ InstructionScreen \‘ disiance: ot - collegeName: String
| Screen shows the user tips on how to ‘ 1?.5"4:?::‘9:}“] + SoBloodSplash: bodlemn + updale(screen; GameScreen) :Tplﬂmm" : GameScreen)
\ play the game. J + addBoat(x: fioat, y: float, rotation: fioat) jcree
\. 3
User prasses the start button camera: OnnographicCamera)
B " User presses the Resume button
g ™
Presses save button '—'
| Screen that the user plays the |
ame.
p. ; B 1 - Uset presses the Pause Button
I’/ SaveScreen \ .
User opens the shop in the game ‘/7 PauseScreen ™
The user is able to save the current state of I
\ the game or load a previous save J leluws the user to pause the gam;_l User presses Fesiart Bution
User presses End Game Button
e ™
Presses Resume bution { ShopScreen \

IKA"CME the user to upgrade their stats. ‘
J
!

I

Presses resume button

User presses Quit button

W User presses Close button.

EndScreen

Screen shown once the user
Ipses or wins and presents final

\ score of the game: |
. ey

Concrete Architecture
UML Class Diagram

ShopScreen
YorkPirates - gameContinue()
- SCREEN TO PIXEL RATIO: int 1.1 [+ upgrade(
+ create()
+ dispose()
+quit()
1.1 1.
1.1 1.1
GameScreen
Diff 1.1 1.1 [piayerTeam: String
i+ enemyTeam; String
1.1 - elapsedTime: float
- IsPaused: boolean ScoreManager
- followPlayer: boolean - score: int
TitleScreen 1.1
_1_1_.-«1-.—.-1‘ :gzmzmell + Add(amount: int)
1.1 +gameStart() - nee + Get(): int
1 |+ gameReset) + GelString(): String
1.1 1.1
11 !
1.1
1.1
A PauseScreen
[1.1 1.1
- gameContinue()
SaveScreen
1.1 - gameContinue()
TipScreen 1.1
- gameContinue()
SavelLoad
+ saveObiject()

+ saveScreen()

+
+loadSave()

1.1 0.”
HUD GameObject
- utorialComplete: boolean +x: float
- canEndGame: boolean +y: float
- DISTANCE_GOAL: int + width: float
- POINT_GOAL: int + height: float
- DISTANCE_REWARD: int + maxHealth: int 0.*
- POINT_REWARD: int + currentHealth: float
* team: Siring Obstacle
* i +takeDamage(screen: GameScreen, + collision: boalean
damage: float. projectileTeam: String)
+mave(x: fioat, y: float)
+draw(balch: SpriteBaich, elapsedTime fioat) + colides(batch: SpriteBatch,
player: Player): Boolean
Projectile HealthBar Indicator
- maxDistance: float - startWidth: float - visible: boolean
- projectileSpeed: float
- projectiieDamage: float 0.* + resize(currentValue: fioat)
+ update(screen: GameScreen) s~ 1.1
0.
1. 1 1.1
Player College 1.1
- HEALTH: int |+ capturedCount: int
- POINT_FREQUENCY: int Boat
. SPEED: fioat - splashTime: float
- CAMERA_SLACK: float - doBloodSplash: boolean + speed: int
- collegeName: String
- distance: float
- doBloodSplash: boolean + update(screen: GameScreen) :L%?n:mrgn. GameScreen)
+ addBoat(x: float, y: float, rotation: float) _
+update(screen:GameScreen,
camera: OrthographicCamera)

Concrete Architecture
emisdoncaa] (Inheritance)

ScreenAdapter | | Game ‘

YorkPirates GameObject
- SCREEN TO PIXEL RATIO: in ”i;:oa;
+y: floal
ShopScreen SaveScreen HUD + createl) + width: float
TipScreen - tutorialComplete: boolean + dispose() : :'He‘;g::gﬁr‘?} int
EndScreen - gameContinue() - gameContinue - canEndGame: boolean + quit() e
. + currentHealth: fioat
+ upgrade(] - DISTANCE_GOAL: int it
- gameContinue() - POINT_GOAL: int eam: String
- DISTANCE_REWARD: int
- POINT_REWARD: int + takeDamage(screen: GameScreen,
damage: float, projectileTeam: String)
+ maove(x: float, y: float)
+draw(batch: SpriteBatch, elapsedTime:fioat
+ renderSiage(screen: Gam ! i s)
TitleScreen Obstacle
+ collision: boolean
+ gameStart() PauseScreen GameScreen
DifficultyScreen + playerTeam: String * ccllldesltnatch: ISpnleBamn,
+ enemyTeam: Sting player: Player): Boolean
- gameContinue! T
g 0 - elapsedTime: float ScoreManager HealthBar
- isPaused: boolean - score: int
- followPlayer: boolean . Projectile - startWidth: float
- maxDistance: float
+ gamePause() + Add{amount: int) - projectileSpeed: float + resize(currentValue: float)
+ gameEnd{boolean) + Get(): int - projectileDamage: float
+ gameReset() + GetString(): String
+ Update(screen: GameScreen)
Indicator
- visible: boolean
Player College
- HEALTH: int -
- POINT_FREQUENCY: int +-capturedCount: int
- SPEED: float - splashTime: float PowerUp
SaveLond - CAMERA_SLACK: float - doBloodSplash: boolean
- distance: float - collegeName: String
- doBloodSplash: bool
+ saveObjec() obloodsplash: boclean
+ saveScreen() +up 1: GameScreen)
+ resumeSave(screen: GameScreen +update(screen:GameScreen, + addBoat(x: float, y: float, rotation: float)
+ loadSave() camera: OrthographicCamera) Boat
+ speed: int
+ followPlayer()
+ update(screen: GameScreen)|

We used the classes part of draw.io to create class diagrams for the concrete and abstract structure of the project to show inheritance, in addition to state diagrams

for the sequence of events that would occur throughout the course of our application’s use using ‘state’ in draw.io. We simplified and removed getters, setters and
some utility and instance attributes.

3.(b) Justification of Abstract Architecture

For our abstract architecture, we have focused on how we could structure it so that adding more entities

and screens would be simple in future, and how we could reduce the code that would be duplicated in our

code base. To do this, we made two main classes, GameEntity and Screens which both have the method

update() which is to perform calculations before each entity/screen is rendered.

YorkPirates - The main class of the game

GameEntity

- The class that every object within the game scene is an instance of. Implements health, rendering,
teams, and shooting projectiles. As these are features all objects use, having a base class implement
them is important.

Boat and player

- Boat inherits all attributes and methods of GameEntity and Player inherits both. Boat additionally has
a boolean attribute of ‘movable’ which decides whether the boat can move or not. This is because for
this stage, the enemy boats can’t move but the friendly one can. However in future some Enemy boats
may become movable but some could stay docked.

Colleges

- Inherits all attributes and methods of GameEntity but also has a method called shootFrequency to
set how often it shoots on its own and a switchTeams method for switching the images and turning off
shooting/being shot by the player, when the player captures it.

PauseScreen, TitleScreen and EndScreen

- Each has a different set of buttons needed for its screen and are child classes of screens to use its
render method and all are child classes of screen to use the same background and update() method for
calculations before rendering.

Game Screen

- When the game is restarted, a new instance of this is created so that the game doesn't have to be fully
restarted and also has the methods for restarting, pausing and ending the game but is also a child of
the screen.

Concrete Architecture

We started our implementation by creating the classes seen in the abstract architecture. While doing this, we came
to find other more efficient, in-built features of LibGDX, such as ScreenAdapter or TiledMap, which provided
better solutions than the ones in the abstract architecture. Additionally to this, as we developed more of the game
we found ourselves needing new classes as well as to change old ones. The bullet points following discuss this.

We have focused on the same features as abstract however have added some aspects for the ease of
adding extra functionality in future. One of the outcomes of this is the addition of TiledMaps to the game.
This allows us to rapidly draft prototype and final levels for the game using the software Tiled, which greatly
improves development times, furthermore the TiledMap allows for the implementation of a co-ordinate
based collision system which is largely more efficient than the previous Rectangle based one we used.
YorkPirates
o Due to the structure of LibGDX, we had to make a main Game class. This matches what we planned in
our abstract architecture to an extent but screens are actually child classes of ScreenAdapter and
YorkPirates instantiates TitleScreen and then switches between the others.
TitleScreen, EndScreen, PauseScreen
o These classes are extensions of the ScreenAdapter class and render their screens with Buttons and
overlays on the paused instance of GameScreen. (note: the attributes for these classes are omitted for
clarity). These inheriting ScreenAdapter is different to the abstract architecture as we were not fully
familiar with the structure of libGDX. These classes fulfill the requirements: UR/FR.START_SCRN and
due to TitleScreen, UR.SCRN_NAME / FR.START.NAME due to the ability to add a name on titleScreen,
UR.RESTART_GAME due to the pause menu, FR.START.START and FR.START.EXIT due to the

TitleScreen, FR.KILL_SCRN due to the EndScreen class and FR.GAME_SOUND due to the mute button
on the PauseScreen.
GameScreen
o This class is the main gameplay environment, containing and rendering all instances of the objects within
the game, which meets requirement UR.SEE_POS. Furthermore it has the methods for pausing the
game with gamePause(), ending the game with gameEnd() and restarting the game with gameReset().
We put those methods in this class because every other class that needs these has access to an
instance of this class.
HUD
o We did not have this class in the abstract architecture but we added it for readability to avoid clutter in
the main GameScreen class. This improved readability has made it much simpler to implement Ul
features such as tutorials, tasks and viewing points/loot, meeting UR.TUTORIAL, UR.SEE_TASKS,
UR.VIEW_PNTS and UR.VIEW_LOOT. Furthermore as it is separate it has given the ability to turn off
rendering for it so that a different screen can be overlaid on the GameScreen without the HUD being
visible.
GameObject
o Every object in the game is an instance of GameObject where ones with seperate functionality are a
child class of GameObject. This is so that common attributes and methods such as currentHealth,
takeDamage and position within the world (x, y) are shared among all objects. This class is similar to
how we described in the abstract architecture however we encapsulated loot and points in
ScoreManager.
ScoreManager
o ScoreManager was created to lay the groundwork for future possible implementations of a more
complex loot and points system. It also encapsulates the values, which in the case of points makes it
easier to update the points value from the Player when they move() or the loot value from the College
when it is defeated, meeting UR.COLLECT_POINTS and UR.COLLECT_LOOT.
College
o College is a child class of GameObject with the further features that it has Projectiles and a HealthBar
and Indicator. This is in a separate class as it shoots automatically rather than through user input like
Player. This functionality was extended between abstract and concrete architecture by the addition of
instances of HealthBar, Indicator and Projectile.
Player
o In the abstract architecture, Player was a child of Boat because Boat allowed movement. However we
decided to put the movement method into GameObject because Projectile, HealthBar and Indicator,
also needed to be able to move and so therefore we could use the move() method for all of these, as
well as in future, moveable enemy boats. This ensures we still meet the requirement UR.UPDATE_POS.
HealthBar
o HealthBar was not in our abstract, however we realised the HealthBar was needed for both the Player
and the College and so to save us from code repetition we made HealthBar into its own class. This will
also make implementing enemy boats in the future easier.
Projectile
o In our abstract architecture, shooting was implemented as part of GameObject, however as we now
have more objects in the game and not all of them shoot. Having all objects do this would be inefficient
so we moved it into its own class, which Player and College both use, allowing UR.ATK_CLG to be met.
Indicator
o In our abstract implementation we did not have a method which allows the user to see where they are
relative to the colleges (UR.CLG_POS). This is why we added Indicators, these draw arrows showing
the player which direction each college is, fulfilling the requirement UR.CLG_POS.

Bibliography

[1] “York Pirates! Abstract Architecture Class Diagram” York Pirates!
https://engteam14.github.io/media/Abstract%20Architecture.png.

[2] “York Pirates! State Diagram” York Pirates! https://engteam14.github.io/media/State Diagram_4.png.
[3] “York Pirates! Concrete Architecture Class Diagram” York Pirates!
https://engteam14.github.io/media/concrete.png.

[4] “York Pirates! Concrete Architecture Class Diagram (Inheritance)” York Pirates!
https://engteam14.github.io/media/inheritence.png.

